Automatic Control

If you have a smart project, you can say "I'm an engineer"

Staff boarder

Dr. Mohamed Saber Sokar

Dr. Mostafa Elsayed Abdelmonem

Instructor

Eng. Bassem

Eng. M. Hassan

Automatic Control MPE 424

Course aims:

- Understand the mathematical modeling of other systems
- Understand the different classic control strategies
- Understand and design the control systems
- Create and innovate the real model to simulate the some cases

• References

- Dorf, R. C., & Bishop, R. H. (2001). Modern control systems. Upper Saddle River, NJ: Prentice Hall. (Ref-01)
- Ogata K. (2002). Modern Control Engineering. 4th ed.,Prentice Hall, New Jersey. (Ref-02)

Course plan

week	Date	Contents	Requirements	Laboratory	References	Marks	Instructor
1	12-2	Introduction Syllable/Course specs Control system classifications Laplace transform					
2	19-2	Modeling - Mechanical system - Hydraulic system	Project idea and team names	DC-Motor control			
3	26-2	Modeling - Electrical system (motors and combined systems)	Quiz		Ref-01	5/3 quizes	Dr. Mostafa Elsayed
4	5-3	Block diagram Transfer function and State space		Electrical- mechanical analogy			
5	12-3	Time Response (1 st and 2 nd order)	Quiz			5/3 quizes	
6	19-3	Steady state Error Stability analysis	Progress report	Filters			
7	26-3	Midterm				15	

Course plan

week	Date	Contents	Requirements	Laboratory	References	Marks	Instructor
8	2-4	Frequency Response Nyquist plot	Reports (smart building)	DC- motor Kit		5	
9	9-4	Frequency Response Bode Plot	Quiz	Operational amplifier circuits	Ref-01	5/3 quizes	Dr. Mohamed
10	16-4	Design Controller and system compensation			Def 02		Saber Sokar
11	23-4	Design PID controller Optimal and LQR control			Ref-02		
12		Receive project				15 for project and report	

Evaluation rules

Report Contents

- Research plane
- Aim
- Tools/facilities
- Methodology/control strategy
- Experimental works
- Result/ conclusions

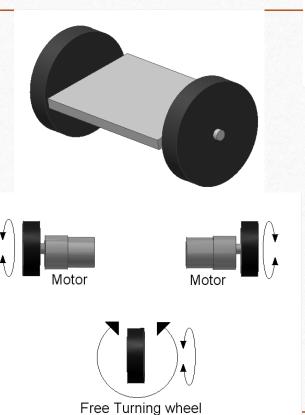
Marks distribution

Marks \setminus	Assessments		Final	Total
assessments			Exam	
	• MidTern	n 15	70	
	• Projects	10		
	• Report &	& 5		
	Quize			
TOTAL		30	70	100

Projects

• Line Follower Robot Steering Mechanism

- Design mechanism
 - Theory of machine
 - Machine design
- Classification (only one)
 - 2-wheeled robots
 - 3-wheeled vehicles
 - 4-wheeled vehicles
 - 2 powered, 2 free rotating wheels
 - 2-by-2 powered wheels for tank-like
 - Car-like steering
 - 5 or more wheeled vehicles

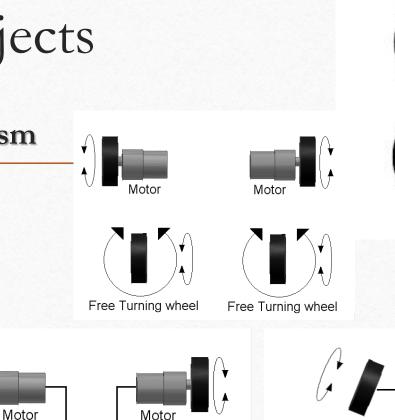


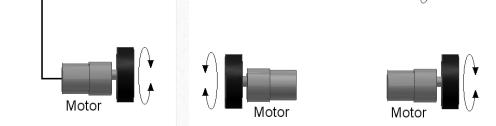
Projects

Motor

Line Follower Robot Steering Mechanism

- Design mechanism •
 - Theory of machine ٠
 - Machine design •
- Classification (only one) •
 - 2-wheeled robots •
 - 3-wheeled vehicles •
 - 4-wheeled vehicles •
 - 2 powered, 2 free rotating wheels ٠
 - 2-by-2 powered wheels for tank-like ۲
 - Car-like steering •
 - 5 or more wheeled vehicles ۲

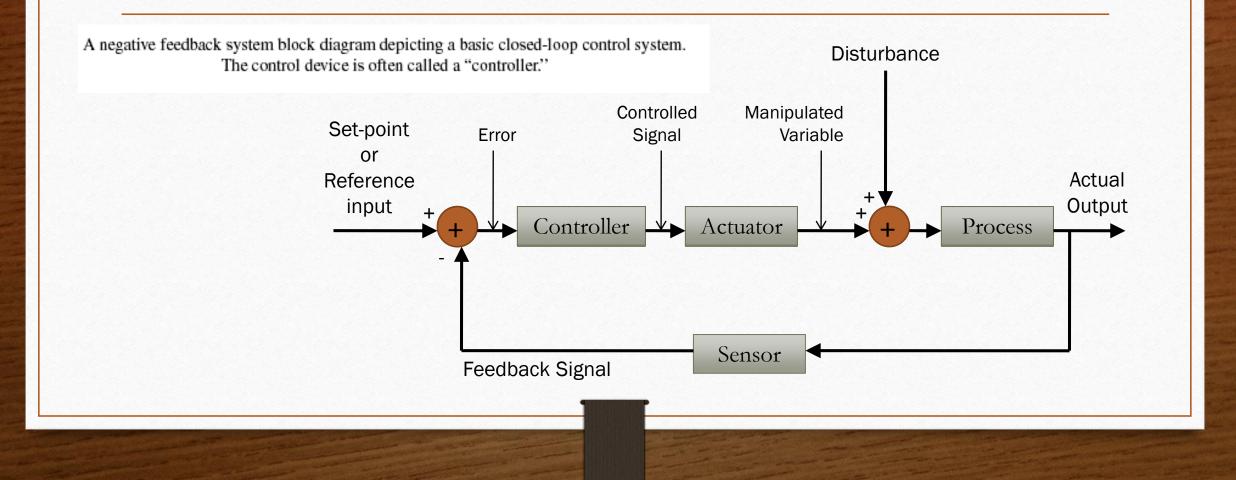


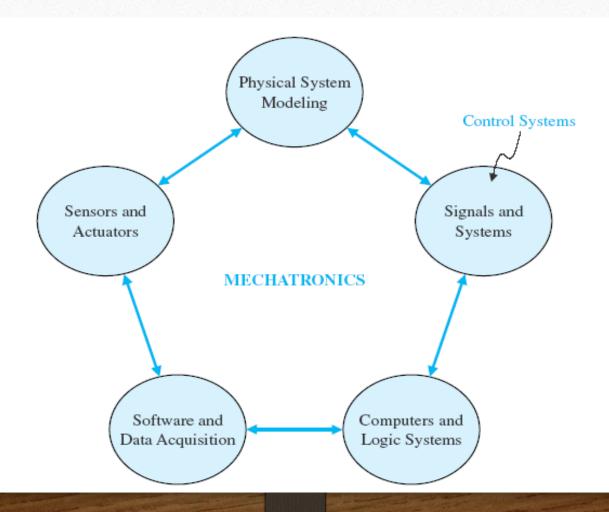


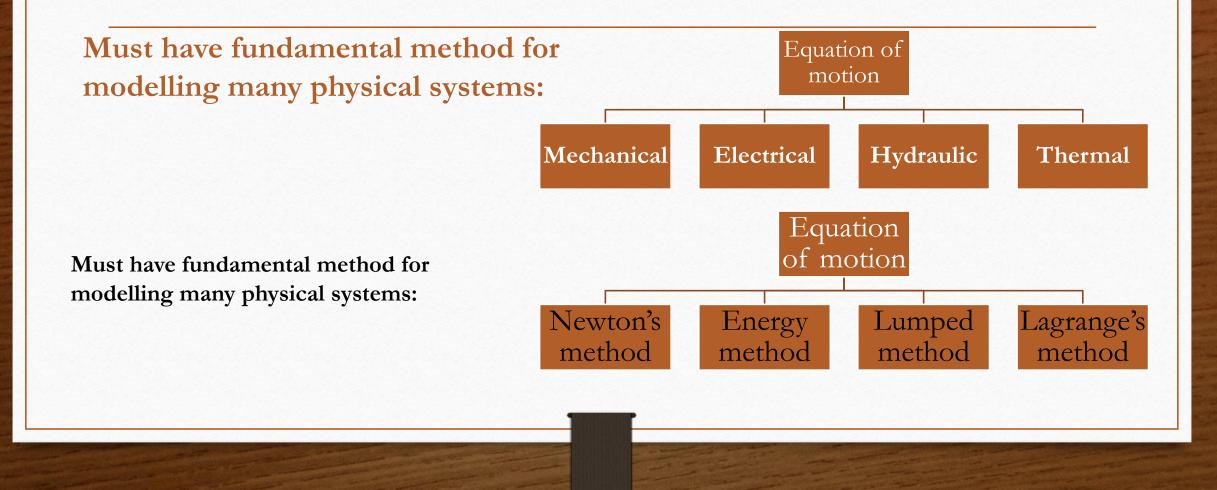
Automatic Control

• Lecture aims:

- Understand a definition of a control system
- Facilitate combining and manipulating differential equations

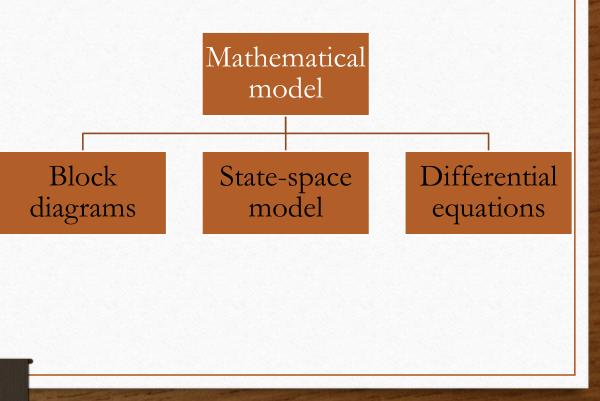


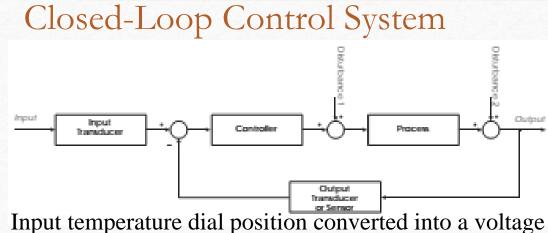




Mathematical Models for the Schematic

- Understand the physical system and its components
- Make appropriate simplifying assumptions
- Use basic principles to formulate the mathematical model
- Write differential and algebraic equations describing the model
- Check the model for validity



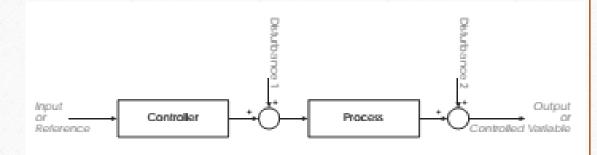


Input temperature dial position converted into a voltage by a potentiometer.

Output temperature converted to a voltage by a thermistor.

Differencing circuit subtracts output from input result is actuating signal controller drives the plant only if there is a difference

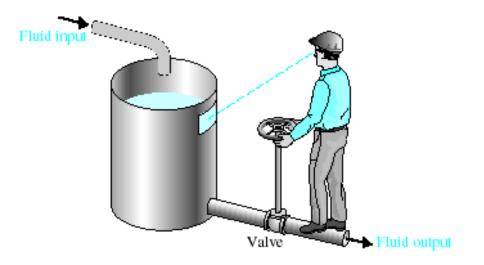
Open-Loop Control System



Process is a boiler, input is fuel, output is heat. Controller is electronics, valves, etc. that control fuel flow into furnace. Input is thermostat position

Examples of Modern Control Systems

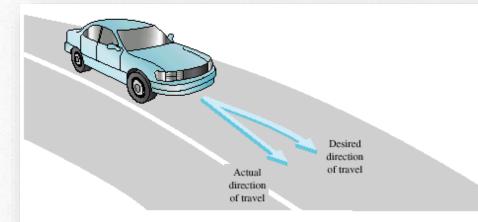
A manual control system for regulating the level of fluid in a tank by adjusting the output valve. The operator views the level of fluid through a port in the side of the tank.



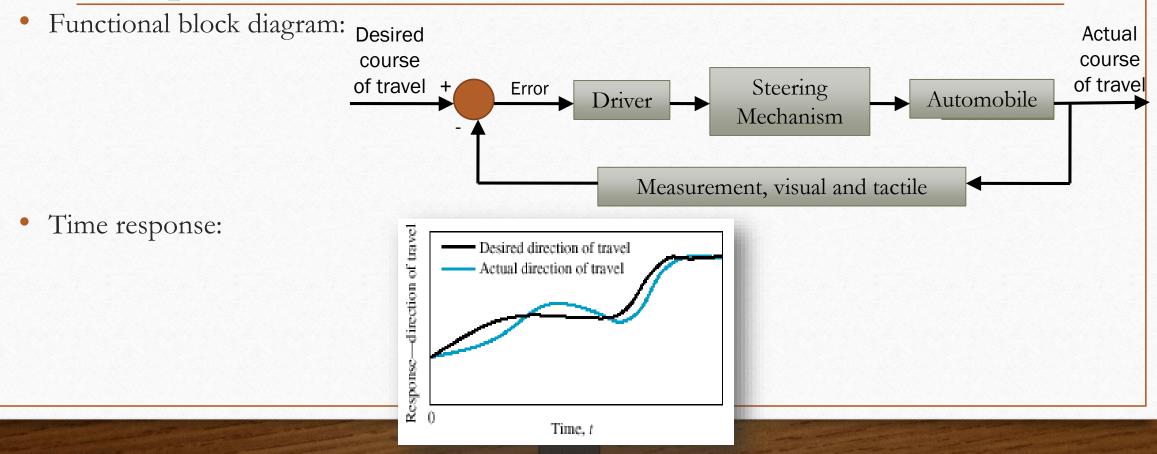
Transportation

Car and Driver

- Objective: To control direction and speed of car
- Outputs: Actual direction and speed of car
- Control inputs: Road markings and speed signs
- Disturbances: Road surface and grade, wind, obstacles
- Possible subsystems: The car alone, power steering system, breaking system



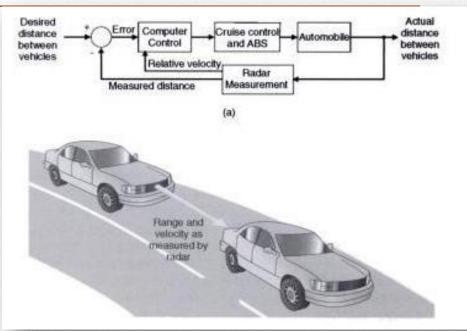
Transportation



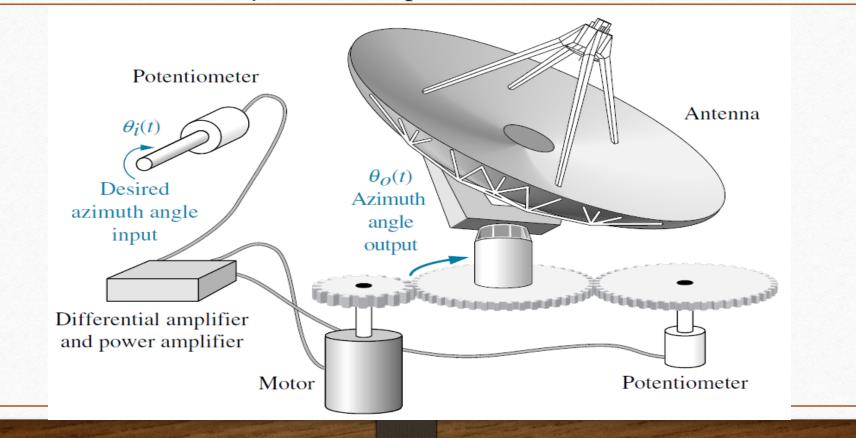
Transportation

• Consider using a radar to measure distance and velocity to autonomously maintain distance between vehicles.

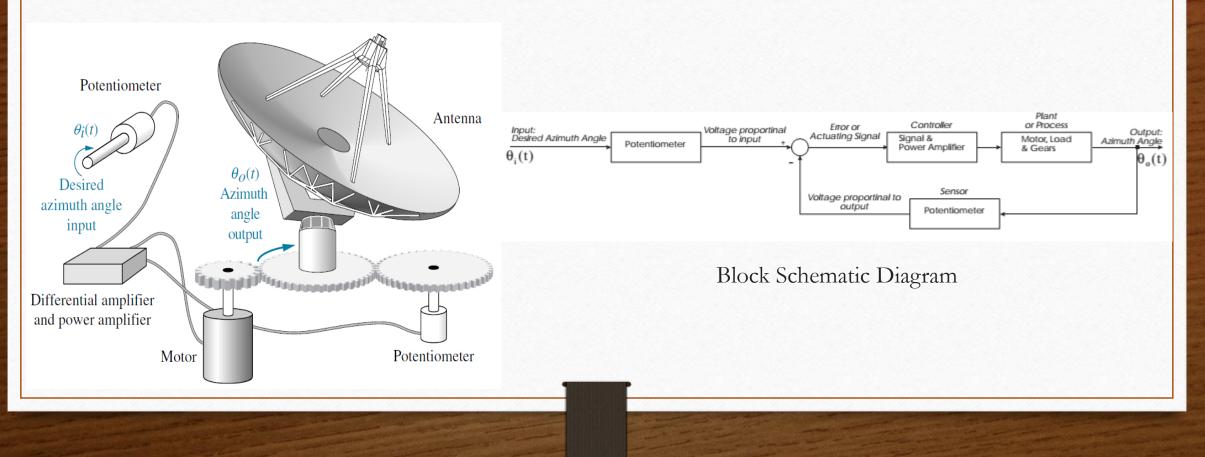
- Automotive: Engine regulation, active suspension, anti-lock breaking system (ABS)
- Steering of missiles, planes, aircraft and ships at sear.



• Azimuth Position Control System Example



Azimuth Position Control System Example

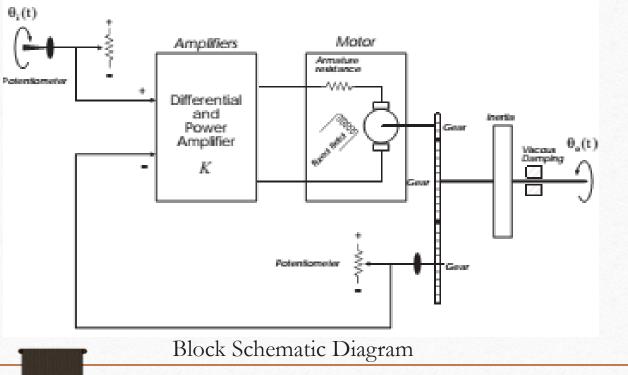


• Azimuth Position Control System Example

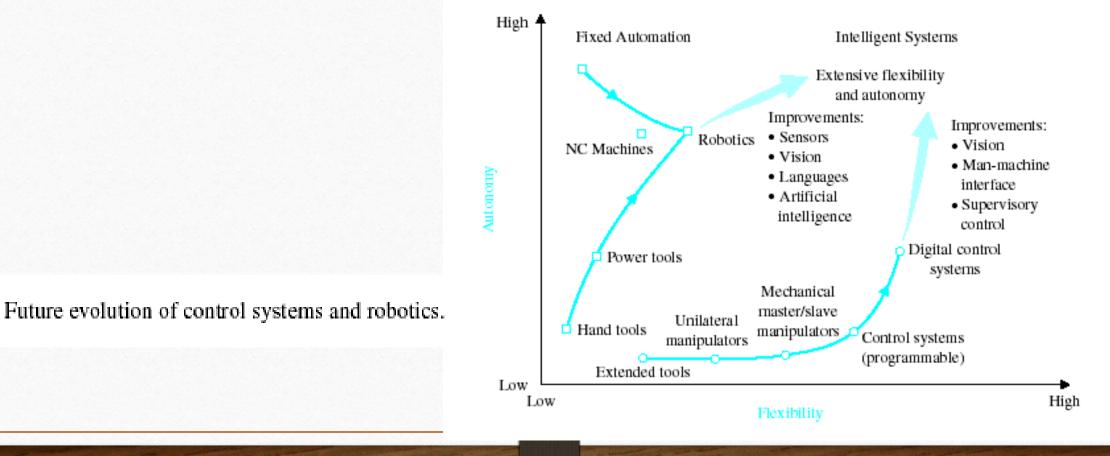
Desired azimuth Power Motor Azimuth angle Potentiometer Preamplifier amplifier and load Gears angle $E_a(s)$ $\theta_o(s)$ $\theta_i(s)$ $V_i(s) +$ $V_e(s)$ $V_p(s)$ *K*₁ $\theta_m(s)$ K_m $K_{\rm pot}$ K K_{g} $s(s+a_m)$ s + aPotentiometer *K*_{pot}

Block Diagram

- Makes relationships more concrete
- Enables decisions to be made about what can be neglected in formulating the mathematical model.
- Assumptions made can be easily reviewed and schematic and/or model adjusted as necessary.
- Should be kept as simple as possible:
 - Checked by analysis and simulation
 - Phenomena added if results do not agree with observed behavior

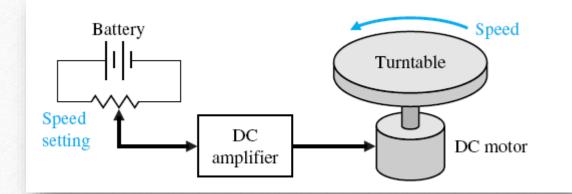


The Future of Control Systems

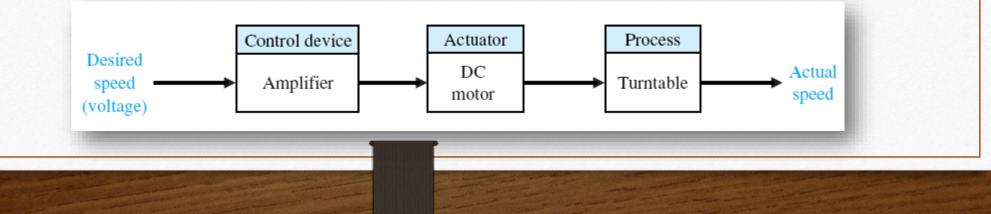


Turntable Speed Control

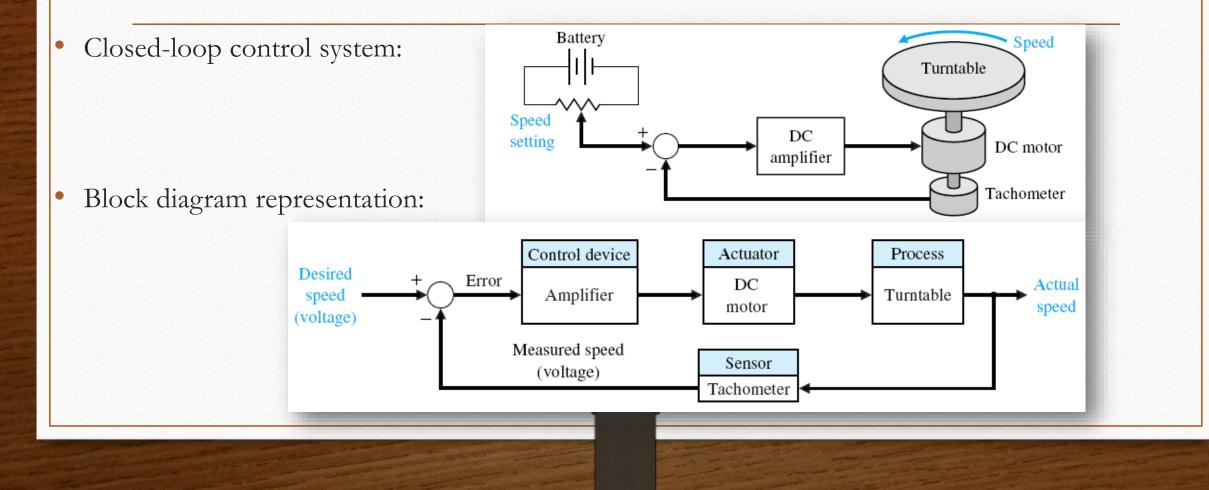
- Application: CD player, computer disk drive
- Requirement: Constant speed of rotation
- Open loop control system:



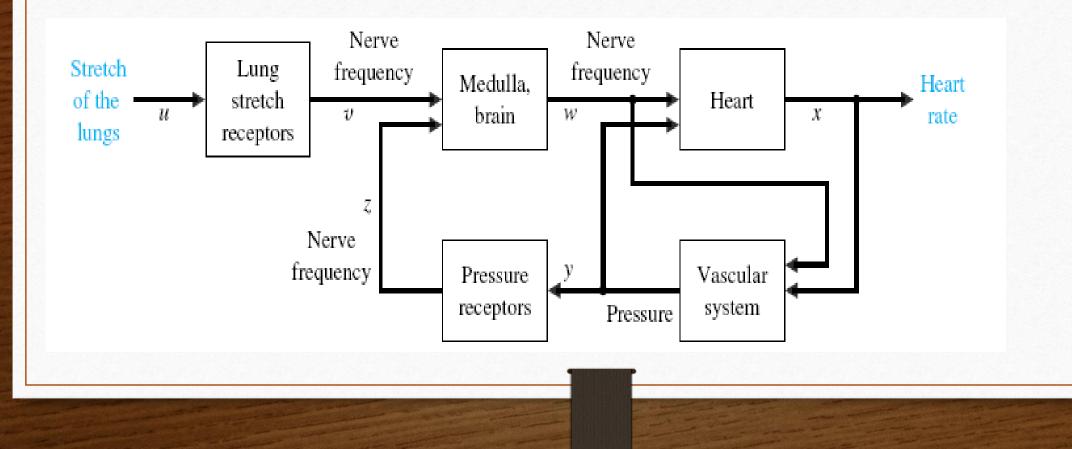
• Block diagram representation:



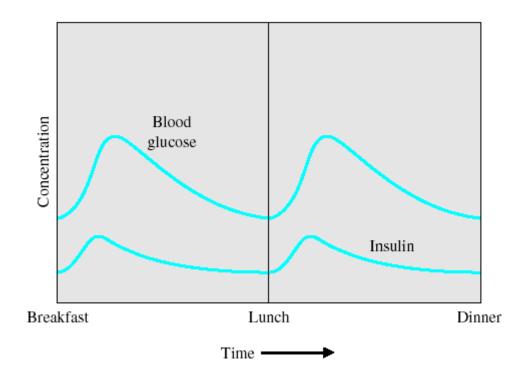
Turntable Speed Control



Design Example

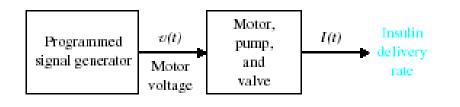


Design Example

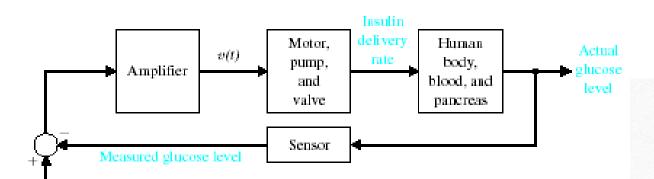


The blood glucose and insulin levels for a healthy person.

Design Example



(a)



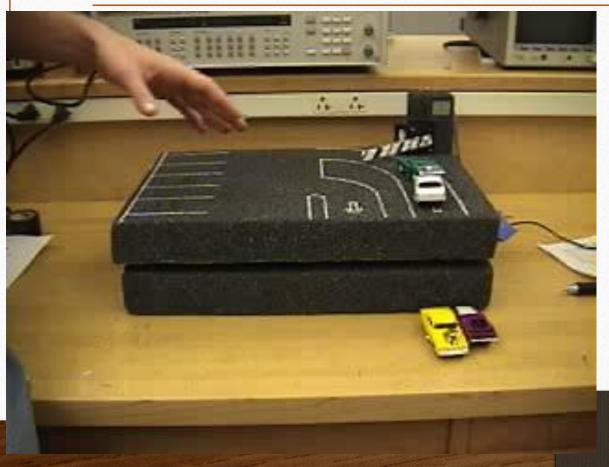
(a) Open-loop (without feedback) control and(b) closed-loop control of blood glucose.

Desired glucose level

(b)

Model Examples

• Car parking



• HVAC system

Automatic control system Defination of Laplace Transform

Given a function f(t), its Laplace transform, denoted by F(s) or $\mathcal{L}[f(t)]$, is given by

 $\mathcal{L}[f(t)] = F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$

where s is a complex variable given by

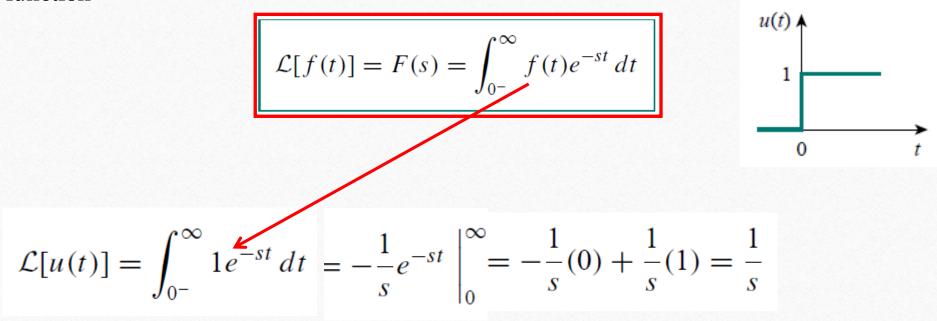
$$s = \sigma + j\omega$$

 $(\Lambda \Lambda \Lambda)$

The Laplace transform is an integral transformation of a function f(t) from the time domain into the complex frequency domain, giving F(s).

Defination of Laplace Transform

a) Step function



Automatic control system Defination of Laplace Transform

b) Impulse function

$$\mathcal{L}[\delta(t)] = \int_{0^{-}}^{\infty} \delta(t) e^{-st} dt$$

c) Exponential function

$$\mathcal{L}[e^{-at}u(t)] = \int_{0^{-}}^{\infty} e^{-at}e^{-st} dt$$
$$= -\frac{1}{s+a}e^{-(s+a)t} \Big|_{0}^{\infty} = \frac{1}{s+a}$$

 $=e^{-0}=1$

δ(t) **▲**

0

Automatic control system Defination of Laplace Transform Example

Determine the Laplace transform of $f(t) = \sin \omega t u(t)$.

Solution

$$F(s) = \mathcal{L}[\sin \omega t] = \int_0^\infty (\sin \omega t) e^{-st} dt$$
$$= \int_0^\infty \left(\frac{e^{j\omega t} - e^{-j\omega t}}{2j}\right) e^{-st} dt$$
$$= \frac{1}{2j} \int_0^\infty (e^{-(s-j\omega)t} - e^{-(s+j\omega)t}) dt = \frac{1}{2j} \left(\frac{1}{s-j\omega} - \frac{1}{s+j\omega}\right) = \frac{\omega}{s^2 + \omega^2}$$

Automatic control systemPropereties of Laplace TransformExampleDetermine the Laplace transform of $f(t) = \sin \omega t u(t)$.

Solution

$$F(s) = \mathcal{L}[\sin \omega t] = \int_0^\infty (\sin \omega t) e^{-st} dt$$
$$= \int_0^\infty \left(\frac{e^{j\omega t} - e^{-j\omega t}}{2j}\right) e^{-st} dt$$
$$= \frac{1}{2j} \int_0^\infty (e^{-(s-j\omega)t} - e^{-(s+j\omega)t}) dt = \frac{1}{2j} \left(\frac{1}{s-j\omega} - \frac{1}{s+j\omega}\right) = \frac{\omega}{s^2 + \omega^2}$$

Automatic control system Propereties of Laplace Transform Time Shift

If F(s) is the Laplace transform of f(t), then

$$\mathcal{L}[f(t-a)u(t-a)] = \int_0^\infty f(t-a)u(t-a)e^{-st} dt$$
$$a \ge 0$$

$$\begin{bmatrix} u(t-a) = 0 & t < a \\ \\ u(t-a) = 1 & t > a \end{bmatrix}$$

Automatic control system Propereties of Laplace Transform

 $a \infty$

Time Shift

$$\mathcal{L}[f(t-a)u(t-a)] = \int_{a}^{\infty} f(t-a)e^{-st} dt$$

If we let x = t - a, then dx = dt and t = x + a.

$$\mathcal{L}[f(t-a)u(t-a)] = \int_0^\infty f(x)e^{-s(x+a)} dx$$
$$= e^{-as} \int_0^\infty f(x)e^{-sx} dx$$

$$= e^{-as}F(s)$$

х

 $\mathcal{L}[f(t-a)u(t-a)] = e^{-as}F(s)$

Automatic control system Propereties of Laplace Transform

Time Differentiation

$$\mathcal{L}\left[\frac{df}{dt}\right] = \int_{0^{-}}^{\infty} \frac{df}{dt} e^{-st} dt$$

$$\mathcal{L}[f'(t)] = sF(s) - f(0^{-})$$

Propereties of Laplace Transform

Time Differentiation

$$\mathcal{C}\left[\frac{d^2f}{dt^2}\right] = s^2 F(s) - sf(0^-) - f'(0^-)$$

$$\mathcal{L}\left[\frac{d^{n}f}{dt^{n}}\right] = s^{n}F(s) - s^{n-1}f(0^{-})$$
$$-s^{n-2}f'(0^{-}) - \dots - s^{0}f^{(n-1)}(0^{-})$$

Propereties of Laplace Transform

Time Integration

$$\mathcal{L}\left[\int_0^t f(t) \, dt\right] = \int_{0^-}^\infty \left[\int_0^t f(x) \, dx\right] e^{-st} \, dt$$

$$\mathcal{L}\left[\int_0^t f(t) \, dt\right] = \frac{1}{s} F(s)$$

Automatic control system Propereties of Laplace Transform Time Integration

As an example, if we let f(t) = u(t), F(s) = 1/s

$$\mathcal{L}\left[\int_0^t f(t) \, dt\right] = \mathcal{L}[t] = \frac{1}{s} \left(\frac{1}{s}\right)$$

 $\mathcal{L}\left[\int_{0}^{t} t \, dt\right] = \mathcal{L}\left[\frac{t^{2}}{2}\right] = \frac{1}{s} \frac{1}{s^{2}}$

$$\mathcal{L}[t] = \frac{1}{s^2}$$

$$\mathcal{L}[t^2] = \frac{2}{s^3}$$

$$\mathcal{L}[t^n] = \frac{n!}{s^{n+1}}$$

Propereties of Laplace Transform

Initial and Final Values

For an example;

$$f(t) = e^{-2t} \cos 10t$$

Then;

$$f(t) = e^{-2t} \cos 10t \qquad \longleftarrow \qquad F(s) = \frac{s+2}{(s+2)^2 + 10^2}$$
$$f(0^+) = \lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \frac{s^2 + 2s}{s^2 + 4s + 104}$$
$$= \lim_{s \to \infty} \frac{1 + 2/s}{1 + 4/s + 104/s^2} = 1$$

 $f(0^+) = \lim_{s \to \infty} sF(s)$

Laplace transform

L	TIME DOMAIN		FREQUENCY DOMAIN	
Functions				
	δ(t)	unit impulse	1	
• Substitutes relatively more easily	A	step	$\frac{A}{s}$	
solved algebraic equations for	t	ramp	$\frac{1}{s^2}$	
relatively more difficult to solve	t ²		$\frac{\frac{1}{s^2}}{\frac{2}{s^3}}$	
differential equations	$t^n, n > 0$		$\frac{n!}{s^{n+1}}$	
	e ^{-at}	exponential decay	$\frac{1}{s+a}$	
	$\sin(\omega t)$		$\frac{\omega}{s^2 + \omega^2}$	
	$\cos(\omega t)$		$\frac{s}{s^2 + \omega^2}$	
	te ^{-at}		$\frac{1}{\left(s+a\right)^2}$	
	$t^2 e^{-at}$		$\frac{2!}{(s+a)^3}$	